Selective Reduction of Nitrogen Monoxide with Hydrocarbons over SnO₂ Catalyst

Yasutake TERAOKA, Tomohiro HARADA, Takuya IWASAKI, Takashi IKEDA, and Shuichi KAGAWA

Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852

SnO₂ showed catalytic activity for the selective reduction of NO with hydrocarbons (C₂H₄, C₃H₈, and CH₄) in the presence of excess oxygen, and the activity was not so much decreased even after heat treatments in dry air at 900 °C as well as in humid air at 800 °C. These results show that SnO₂ is an active and stable catalyst for the reaction.

The selective reduction of nitrogen monoxide (NO) with hydrocarbons has recently attracted great attention because of its feasibility to reduce nitrogen oxides in an oxidizing atmosphere. In 1990, Iwamoto et al.¹⁾ and Held et al.²⁾ independently reported that Cu ion-exchanged ZSM-5 (Cu-ZSM-5) showed high catalytic activity for the selective reduction of NO with hydrocarbons, and thereafter the following catalysts have been shown to catalyze the reaction; H-,³⁾ Ce-,⁴⁾ and Ga-⁵⁾ form ZSM-5, Fe-silicate,⁶⁾ Al₂O₃ with and without transition metal additives,⁷⁻⁹⁾ Cu-loaded SiO₂-Al₂O₃, ¹⁰⁾ and sulfate-promoted TiO₂, ZrO₂, and Fe₂O₃.¹¹⁾ During investigations to develop new oxide catalysts which are active for the selective reduction of NO with hydrocarbons, we have revealed that SnO₂ is a good catalyst for the reaction, as reported in this paper.

SnO₂ catalysts were prepared by the calcination of hydrous SnO₂ at 600 °C and 900 °C for 4 h in air. Hydrous SnO₂ was obtained by treating metallic tin with heated nitric acid or by adding ammonia to an aqueous solution of SnCl₄, followed by filtration, washing with deionized water, and drying at 110 °C. SnO₂ prepared from metallic tin and SnCl₄ are referred to as SnO₂(m, T) and SnO₂(c, T), respectively, in which T represents the calcination temperature (°C). SnO₂(m) which was subjected to the heat treatment at 800 °C for 5 h in humid air (H₂O=10%) was denoted as SnO₂(m, 800HT). The selective reduction of NO with hydrocarbons was carried out with a fixed-bed flow reactor by feeding the reaction gas, NO(4400 ppm)–C₂H₄(4400 ppm)–O₂(4.4%)–He(balance), at a rate of 15 cm³ min⁻¹ over 0.25 g of catalyst. C₃H₈(2900 ppm) and CH₄(4400 ppm) were also used instead of C₂H₄. The effluent gas was analyzed by gas chromatography, and the NO re-

duction activity was evaluated by the conversion of NO into N₂. The selectivity to NO reduction is defined as [moles of NO reduced into N₂] / $n \times$ [moles of reacted C_nH_m] in this study.

Figure 1 shows the temperature dependence of the selective reduction of NO with C₂H₄ over SnO₂(c, 600). The reduction of NO into N₂ was observed above ca. 300 °C and the conversion of NO into N₂ showed a volcano-shape dependence on temperature with a maximum at 400 °C. C₂H₄ was converted practically into CO₂, though a slight amount of CO was detected below 400 °C. To confirm the promotion effect of coexisting oxygen, the effect of oxygen concentration on the NO reduction activity was investigated. In the absence of oxygen, NO reduction into N₂ started at around 500 °C, and the conversion of NO into N₂ increased monotonically with increasing temperature. In the presence of oxygen, on the other hand, the onset temperature of NO reduction into N₂ lowered as low as 300 °C and the maximum NO reduction activity was attained at 400 °C. This indicates that the coexisting oxygen promotes the reduction of NO with C₂H₄ over the present SnO₂ catalyst. The conversion of NO into N₂ and that of C₂H₄ at 400 °C over SnO₂(m, 600) are depicted in Fig. 2 as a function of the concentration of oxygen. At the oxygen concentration below ca. 4 vol%, conversions of both NO and C₂H₄ increased with an increase in oxygen concentration. Above ca. 4 vol%, on the other hand, an increase in oxygen concentration resulted in the slight decrease in the conversion of NO with the conversion of C₂H₄ remaining almost constant. The selectivity to NO reduction was 0.44(O₂=2%), 0.41(4.4%), 0.32(7%), and 0.28(10%). Accordingly, the steep increase in NO reduction activity at low oxygen concentration, where the selectivity is

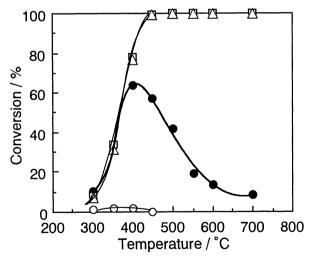


Fig. 1. Selective reduction of NO with C_2H_4 over $SnO_2(m, 600)$. \bullet ; Conversion of NO into N_2 , \square ; Conversion of C_2H_4 , \triangle ; Conversion of C_2H_4 into CO_2 , \circ ; Conversion of C_2H_4 into CO.

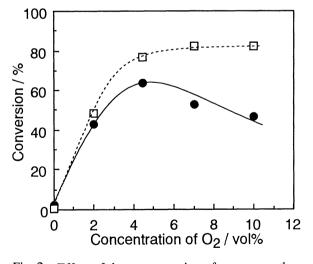


Fig. 2. Effect of the concentration of oxygen on the NO reduction activity of $SnO_2(m,600)$ at 400 °C. NO(4400 ppm), $C_2H_4(4400 \text{ ppm})$. \bullet ; Conversion of NO into N_2 ,

 \Box ; Conversion of C_2H_4 .

almost constant, is due to the promotion effect of oxygen, while the slight decrease at high oxygen concentration is due to the decrease in selectivity. In view of the effect of oxygen concentration on the NO reduction activity, SnO₂ seems to be similar to transition metal-containing catalysts like Cu-ZSM-5¹) rather than solid acid catalysts like Al₂O₃.8)

Effects of starting materials, calcination temperature and heat treatment in humid air on the NO reduction activity of SnO₂ were examined (Table 1). The NO reduction activities of SnO₂(m) and SnO₂(c) were comparable when calcined at the same temperature, indicating that the starting materials have little influence on the NO reduction activity of the resulting SnO₂ catalysts. The catalytic activity of SnO₂ was not so much decreased even after calcination at 900 °C. In addition, the treatment in humid air at 800 °C did not cause a serious decrease in activity, though the temperature for the maximum conversion rose from 400 °C to 450 °C; the NO reduction activity of Cu-ZSM-5 below 400 °C decreased tremendously by the treatment.¹²) These results strongly demonstrate that SnO₂ is an NO reduction catalyst resistant to the heat treatment in both dry and humid air. NO reduction activities of two representative catalysts, Cu-ZSM-5 and Al₂O₃, are also listed in Table 1; Al₂O₃(JRC-ALO-4) was the most active among various kinds of Al₂O₃ tested. Judging from the temperature at which the conversion of NO into N₂ reaches a maximum, the following order in catalytic activity is suggested; Cu-ZSM-5 > SnO₂ > Al₂O₃. Under the present experimental condition, the conversion of NO into N₂ over SnO₂ was comparable to that over Cu-ZSM-5 above 400 °C, though Cu-ZSM-5 was far more active at 300 °C. These results clearly demonstrate

Table 1. Catalytic activity of SnO₂, Cu-ZSM-5, and Al₂O₃ for the selective reduction of NO with C₂H₄

Catalyst	S.A. ^{a)}	Conversion of NO into N_2 / %					
	$\frac{1}{m^2 g^{-1}}$	300 ℃	400 ℃	450 ℃	500 ℃	600 °C	700 ℃
SnO ₂ (m, 600)	9.4	10.6	63.9	57.0	41.6	13.8	8.3
SnO ₂ (m, 900)	4.0	7.9	52.3		36.8	15.9	9.5
SnO ₂ (m, 800HT) ^b)		6.9	53.4	63.1	45.8	16.0	10.9
SnO ₂ (c, 600)	18.6	14.6	66.9		31.8	16.5	7.3
SnO ₂ (c, 900)	5.4	9.0	57.3		37.6	7.8	4.5
Cu(117)-ZSM-5 ^{c)}		87.6	62.3		44.9	18.4	13.0
Al ₂ O ₃ (JRC-ALO-4)		11.3	19.5		29.2	56.8	18.5

a) Specific surface area. b) SnO₂(m) heat-treated at 800 °C for 5 h in humid air (H₂O=10%).

c) Cu ion-exchanged ZSM-5 with ion exchange level of 117%, Reaction gas; NO(4400 ppm)

 $⁻C_2H_4(4400 \text{ ppm}) - O_2(4.4\%) - \text{He(balance)}.$

that although the specific surface area of SnO₂ is rather smaller than those of Cu-ZSM-5 and Al₂O₃, SnO₂ is an efficient catalyst for the selective reduction of NO with hydrocarbons.

Temperature dependences of the NO reduction activity of SnO₂(m, 600) with CH₄, C₂H₄, and C₃H₈ are shown in Fig. 3. It is seen that the highest conversion of NO into N₂ and the lowest temperature for the maximum conversion are realized when using C₂H₄ as a reductant. The selectivity to NO reduction at the maximum conversion was the highest with C₂H₄ (0.41, 400 °C), followed by C₃H₈ (0.25, 450 °C) and CH₄ (0.17, 500 °C). These results show that C₂H₄ is the most efficient reductant among them over SnO₂. It should be noted that SnO₂ catalyzes the selective reduction of NO even with CH₄ though the conversion of NO into N₂ is about 10% at 500 °C under the present experimental condition.

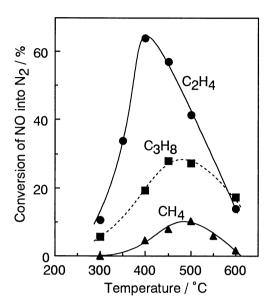


Fig. 3. Selective reduction of NO with CH_4 (4400 ppm), C_2H_4 (4400 ppm) and C_3H_8 (2900 pm) over SnO_2 (m, 600). NO (4400 ppm), O_2 (4.4%).

In conclusion, this paper reveals that SnO₂ which exhibited relatively high activity and stability against the heat-treatment even in the humid condition is a good catalyst for the selective reduction of NO with hydrocarbons and thus a new candidate for NO reduction catalysts. Although C₂H₄ is a more efficient reductant than CH₄ and C₃H₈ over SnO₂, SnO₂ certainly shows the activity for the selective reduction of NO with CH₄.

References

- 1) M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo, and N. Mizuno, Shokubai, 32, 430 (1990).
- 2) W. Held, A. König, T. Richter, and L. Puppe, SAE Paper, 900496 (1990).
- 3) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, and M. Tabata, Appl. Catal., 64, L1 (1990).
- 4) M. Misono and K. Konodo, Chem. Lett., 1991, 1001.
- 5) K. Yogo, S. Tanaka, M. Ihara, T. Hishiki, and E. Kikuchi, Chem. Lett., 1992, 1025.
- 6) E. Kikuchi, K. Yogo, S. Tanaka, and M. Abe, Chem. Lett., 1991, 1063.
- 7) Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki, and T. Ito, Catal. Lett., 6, 239 (1990).
- 8) H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, and M. Tabata, Appl. Catal., 70, L15 (1991).
- 9) Y. Yu-u, Y. Torikai, S. Sato, H. Hosose, H. Yahiro, N. Mizuno, and M. Iwamoto, *Shokubai*, 33, 61 (1991).
- 10) H. Hosose, H. Yahiro, N. Mizuno, and M. Iwamoto, Chem. Lett., 1991, 1859.
- 11) H. Hamada, Y. Kintaihci, M. Tabata, M. Sasaki, and T. Ito, Chem. Lett., 1991, 2179.
- 12) Y. Teraoka, K.Miyazaki, H. Furukawa, and S. Kagawa, unpublished.

(Received December 28, 1992)